SE 422 Advanced Photogrammetry

Dr. Maan Alokayli

mokayli@ksu.edu.sa

REMINDER:

• The midterm exam will be held on:

Tuesday 10/1/2023, during the Lab time (1:30pm – 3:00pm)

(Tentative topics of the exam until the end of 8-Parameter Transformation)

Two-Dimensional (2D) Coordinate Transformation

Two-Dimensional (2D) Coordinate Transformation

• Depending on the required accuracy or the available common points, **either** one of the following 2D transformations is carried out:

(1) Similarity Transformation (4 Parameters Transf. or Helmert Transf.)

• 4 unknown parameters: Linear and nonlinear

(2) Affine Transformation

- 6 unknown parameters: Linear and nonlinear
- **(3) Bilinear Transformation**
	- 8 unknown parameters: Linear and nonlinear

(4) Projective Transformation

• 8 unknown parameters: Linear and nonlinear

2D Conformal Coordinate Transf.

- Process for converting from one coordinate system to another is known as *coordinate transformation.*
- Two-dimensional \rightarrow plane surfaces.
- Conformal \rightarrow True Shape is preserved after transformation
- Coordinates of Two points must be known in both coordinate systems (arbitrary and final).
- Accuracy is improved by choosing these two points as far apart as possible
- If there are more than two control points, an improved solution may be obtained using the LS technique

Three Basic Steps of 2D Transformation

- \bullet 1) Scale Change: $s =$ $\it ab$ dis. on image $AB_{\textit{dis.on ground}}$
- 2) **Rotation**: From a tangential angle
- 3) **Shifts**: use the original model to get the shifts in both directions
- If the scale (λ) is eliminated \rightarrow Rigid body transformation.

Applications of 2D Conformal Coordinate Transf.

- **Rectifying the image measurements**
- **Mosaics**: Continuous pictures of the terrain
- Initial approximation value: of angle κ^o for space resection (SR)

2D Similarity Transformation (4-Parameter Transformation)

Rotation Matrix in 2D

• M is the rotation matrix corresponding to rotation angle θ . This is an orthogonal matrix having orthonormal column and row vectors and it has the properties:

•
$$
M^{-1} = M^{T}
$$
 and $M^{T}M = I$
\n
$$
M = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \Rightarrow M^{-1} = M^{T} = \begin{bmatrix} cos(\theta) & sin(\theta) \\ -sin(\theta) & cos(\theta) \end{bmatrix}
$$

$$
x = x'\lambda \cos(\theta) - y\lambda \sin(\theta) + t_x
$$

$$
y = x'\lambda \sin(\theta) - y'\lambda \cos(\theta) + t_y
$$

Nonlinear Model Why?

$$
\begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}
$$

Nonlinear Model in matrix form

$$
x = \lambda M x' + T
$$

Nonlinear Model in compact form

If X and Y are constants (i.e., the σ_i is very small or the weight is very large). Let: $a = \lambda \cos \theta$, $b = \lambda \sin \theta$, $c = tx$, and $d = ty$

$$
x_i = a x'_i - b y'_i + c
$$

$$
y_i = bx'_i + a y'_i + d
$$

Linear Model

The linear model of 2D similarity transformation can be solved. Then the parameters can be used as approximation values for the nonlinear model.

$$
\begin{bmatrix} x_i \\ y_i \end{bmatrix}_{2n\times 1} = \begin{bmatrix} x'_i & -y'_i & 1 & 0 \\ y'_i & x'_i & 0 & 1 \end{bmatrix}_{2n\times 4} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}_{4\times 1}
$$

• Extracting the physical parameters:

$$
a=\lambda\cos(\theta), \qquad b=\lambda\sin(\theta),
$$

Direction of all Quadrants

Figure: Four Quadrants

To get θ in correct quadrant using MATLAB $\rightarrow \theta = \alpha \tan 2(b, a)$ Be careful, when using the calculator, you must return θ to its correct quad.

Example 1: Linear Model of 2D Transf.

• Given two points of the fiducial marks, together with observations of these two points. Compute the coordinates of point number 3 using the four-parameter (2D similarity) transformation.

Solution by MATLAB

- From *Math 107 (Linear Algebra)*, the solution for the linear system $(AX = b)$ is:
- $X = A^{-1}b$ (Assuming that A is square matrix)
- Remember from **SE 331** course, If **A** is not square matrix, the solution is $X =$ $(A^T A)^{-1} A^T b.$
- The main objective to solve for the unknown parameters $(\theta, \lambda, t_x, t_y)$.
- **The model is nonlinear. As a result, the following steps are needed:**
	- Initial approximation values
	- Partial derivatives of the model
	- Iterative process solution using MATLAB (such as Newton Iteration)

Solution

This example can be solved by either (Ax=L \blacktriangleright $X = A^{-1}L$) or ($X = (A^TWA)^{-1}A^TWL$)

 $X =$ α \boldsymbol{b} \mathcal{C}_{0} \boldsymbol{d} = 1.1196 1.1628 534.0657 559.9934

Now, extract the physical parameters:
$$
\lambda = \sqrt{a^2 + b^2} = 1.6142
$$

\n $\theta = \tan^{-1}(b/a) = 0.8043 \text{ rad} = 46.0844^0$
\n $t_x = 534.0657 \text{ mm}$
\n $t_y = 559.9934 \text{ mm}$

Example 2: Linear Model of 2D Transf.

• Given 7 points of the fiducial marks, together with observations of these 7 points. Compute the coordinates of 7 and 8 using the fourparameters similarity transformation.

** note that here A matrix will not be a square matrix (we cannot use $\pmb{X} = \pmb{A}^{-\pmb{1}}\pmb{b}$ in this case)

Constructing the Design matrix (A or J) and misclosure vector (L or K or ${f}_i$)

• **for**
$$
i = 1:n
$$

\n
$$
\begin{bmatrix}\nx_1' & -y_1' & 1 & 0 \\
y_1' & x_1' & 0 & 1 \\
x_2' & -y_2' & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots \\
x_n' & -y_n' & 1 & 0 \\
y_n' & x_n' & 0 & 1\n\end{bmatrix}
$$
\n
$$
L = \begin{bmatrix}\nx_1 \\
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n\n\end{bmatrix} \rightarrow in MATLAB, A = \begin{bmatrix}\nx'(i) & -y'(i) & 1 & 0 \\
y'(i) & x'(i) & 0 & 1\n\end{bmatrix}, L = \begin{bmatrix}\nx(i) \\
y(i)\n\end{bmatrix}
$$

end

$$
X = (A^TWA)^{-1}A^TWL,
$$

Partial Derivatives of the 2D Tranf.

$$
J_{2n \times 4} = \begin{bmatrix} \frac{\partial F_1}{\partial \lambda} & \frac{\partial F_1}{\partial \theta} & \frac{\partial F_1}{\partial t_x} & \frac{\partial F_1}{\partial t_y} \\ \frac{\partial F_2}{\partial \lambda} & \frac{\partial F_2}{\partial \theta} & \frac{\partial F_2}{\partial t_x} & \frac{\partial F_2}{\partial t_y} \end{bmatrix}_{2n \times 4}
$$

(we will derive that in the lab)

Where

$$
F_1 = x_i - \lambda x_i \cos(\theta) + \lambda x'_i \sin(\theta) - t_x
$$

$$
F_2 = y_i - \lambda x_i \sin(\theta) - \lambda y'_i \cos(\theta) - t_y
$$

$$
K = -F = -\begin{bmatrix} x_i - \lambda x_i \cos(\theta) + \lambda x'_i \sin(\theta) - t_x \\ y_i - \lambda x_i \sin(\theta) - \lambda y'_i \cos(\theta) - t_y \end{bmatrix}_{2n \times 1}
$$

Example: Nonlinear Model of 2D Transf.

We will do this example in the Lab (this week)

HW-2 will be available this week, and it is due next week.

While (Δ **< 0.00000001)**

for $i = 1:n$ $B=$ $\frac{\partial F_1}{\partial \lambda}$, $\frac{\partial F_1}{\partial \theta}$, $\frac{\partial F_1}{\partial t_x}$ $\frac{\partial F_1}{\partial t_x}, \frac{\partial F_1}{\partial t_y}$ ∂t_y $\frac{\partial F_2}{\partial \lambda}$, $\frac{\partial F_2}{\partial \theta}$, $\frac{\partial F_2}{\partial t_x}$ $\frac{\partial F_2}{\partial t_x}, \frac{\partial F_2}{\partial t_y}$ $\partial t_y \big]_{2n \ge 4}$ \rightarrow (this will be derived in the lab.) $K = -\left[x - \lambda x_i' \cos(\theta) + \lambda y_i' \sin(\theta) - t_x\right]$ $y - \lambda x_i' \sin(\theta) - \lambda y_i' \cos(\theta) - t_y \big|_{2n \times 1}$ **end**

* Remember from SE331:
$$
\Delta = (B^T W B)^{-1} * (B^T W f)
$$

\n
$$
\Delta_{4x1} = \begin{bmatrix} \delta \lambda \\ \delta \theta \\ \delta t_x \\ \delta t_y \end{bmatrix} = (B^T W B)^{-1} (B^T W K)
$$

 $X =$ $\boldsymbol{\lambda}$ $\boldsymbol{\theta}$ t_x t_y $0ld$ + δλ $\boldsymbol{\delta \theta}$ $\pmb{\delta t}_x$ δt_y

end