SE 422 Advanced Photogrammetry

Dr. Maan Alokayli

mokayli@ksu.edu.sa

REMINDER:

The midterm exam will be held on:

Tuesday 10/1/2023, during the Lab time (1:30pm – 3:00pm)

(Tentative topics of the exam until the end of 8-Parameter Transformation) Two-Dimensional (2D) Coordinate Transformation

Two-Dimensional (2D) Coordinate Transformation

• Depending on the required accuracy or the available common points, either one of the following 2D transformations is carried out:

(1) Similarity Transformation (4 Parameters Transf. or Helmert Transf.)

• 4 unknown parameters: Linear and nonlinear

(2) Affine Transformation

- 6 unknown parameters: Linear and nonlinear
- (3) Bilinear Transformation
 - 8 unknown parameters: Linear and nonlinear

(4) **Projective Transformation**

• 8 unknown parameters: <u>Linear and nonlinear</u>

2D Conformal Coordinate Transf.

- Process for converting from one coordinate system to another is known as *coordinate transformation.*
- Two-dimensional \rightarrow plane surfaces.
- Conformal \rightarrow True Shape is preserved after transformation
- Coordinates of Two points must be known in both coordinate systems (arbitrary and final).
- Accuracy is improved by choosing these two points as far apart as possible
- If there are more than two control points, an improved solution may be obtained using the LS technique

Three Basic Steps of 2D Transformation

- 1) Scale Change: $s = \frac{ab_{dis.\,on\,image}}{AB_{dis.on\,ground}}$
- 2) **Rotation**: From a tangential angle
- 3) **Shifts**: use the original model to get the shifts in both directions
- If the scale (λ) is eliminated \rightarrow Rigid body transformation.

Applications of 2D Conformal Coordinate Transf.

- Rectifying the image measurements
- Mosaics: Continuous pictures of the terrain
- Initial approximation value: of angle κ^o for space resection (SR)

2D Similarity Transformation (4-Parameter Transformation)

Rotation Matrix in 2D

 M is the rotation matrix corresponding to rotation angle θ. This is an orthogonal matrix having orthonormal column and row vectors and it has the properties:

•
$$M^{-1} = M^T$$
 and $M^T M = I$

$$M = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \Rightarrow M^{-1} = M^T = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$x = x'\lambda\cos(\theta) - y\lambda\sin(\theta) + t_x$$
$$y = x'\lambda\sin(\theta) + y'\lambda\cos(\theta) + t_y$$

Nonlinear Model Why?

$$\begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Nonlinear Model in matrix form

$$x = \lambda M x' + T$$

Nonlinear Model in compact form

If X and Y are constants (i.e., the σ_i is very small or the weight is very large). Let: $a = \lambda \cos \theta$, $b = \lambda \sin \theta$, c = tx, and d = ty

$$x_i = a x'_i - b y'_i + c$$
$$y_i = b x'_i + a y'_i + d$$

Linear Model

The linear model of 2D similarity transformation can be solved. Then the parameters can be used as approximation values for the nonlinear model.

$$\begin{bmatrix} x_i \\ y_i \end{bmatrix}_{2nx1} = \begin{bmatrix} x'_i & -y'_i & \mathbf{1} & \mathbf{0} \\ y'_i & x'_i & \mathbf{0} & \mathbf{1} \end{bmatrix}_{2nX4} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}_{4X1}$$

• Extracting the physical parameters:

$$a = \lambda \cos(\theta), \quad b = \lambda \sin(\theta),$$

λ	θ	t_x	ty
$a^{2} + b^{2} = \lambda^{2} \cos^{2}(\theta) + \lambda^{2} \sin^{2}(\theta)$ $a^{2} + b^{2} = \lambda^{2} (\cos^{2}(\theta) + \sin^{2}(\theta))$ $a^{2} + b^{2} = \lambda^{2}$ $\lambda = \sqrt{a^{2} + b^{2}}$	$\frac{b}{a} = \frac{\lambda \sin(\theta)}{\lambda \cos(\theta)}$ $\theta = \tan^{-1}(b/a)$	$t_{\chi} = c$	$t_y = d$

Direction of all Quadrants

Figure: Four Quadrants

To get θ in correct quadrant using MATLAB $\rightarrow \theta = atan2(b, a)$ Be careful, when using the calculator, you must return θ to its correct quad.

Example 1: Linear Model of 2D Transf.

• Given two points of the fiducial marks, together with observations of these two points. Compute the coordinates of point number 3 using the four-parameter (2D similarity) transformation.

No.	x'_i	y'_i	x _i	y _i
1	632.17	121.45	1100.64	1431.09
2	355.2	-642.07	1678.39	254.15
3	1304.81	596.37		

Solution by MATLAB

- From Math 107 (Linear Algebra), the solution for the linear system (AX = b) is:
- $X = A^{-1}b$ (Assuming that A is square matrix)
- Remember from **SE 331** course, If **A** is not square matrix, the solution is $X = (A^T A)^{-1} A^T b$.
- The main objective to solve for the unknown parameters (θ , λ , t_x , t_y).
- The model is nonlinear. As a result, the following steps are needed:
 - Initial approximation values
 - Partial derivatives of the model
 - Iterative process solution using MATLAB (such as Newton Iteration)

No.	x'_i	y'_i	x _i	y _i
1	632.17	121.45	1100.64	1431.09
2	355.2	-642.07	1678.39	254.15
3	1304.81	596.37		

Solution

	г Л л				-			_
$\begin{bmatrix} x_i \\ y_i \end{bmatrix}_{2nx1} = \begin{bmatrix} x'_i & -y'_i & 1 & 0 \\ y'_i & x'_i & 0 & 1 \end{bmatrix}$	$\left[\begin{array}{c} a \\ b \\ c \\ d \end{array}\right]_{2nX4} \left[\begin{array}{c} a \\ b \\ c \\ d \end{array}\right]_{2nX4}$	ł <i>X</i> 1						
<i>In equation form:</i> → 632.17 a 121.45 a 355.20 a	+ 121.45 l - 632.17 a + (-642.0)	b + c + 0 * b + 0 * c + 0 * c + 0 + 0 + c + 0 + c + 0 (07) $b + c = 0$	d = + d = = 167	= 1100.6 = 1431.09 78.39	4 Ə			
(-642.07)	7) a — 355.	20 b + d =	254	1.15				
`	632.17	-121.45	1	0]	[1100.64]		[a]	1
In matrix form: 🔿 4 –	121.45	632.17	0	$1 _{}$	1431.09	. V _	b	1
	355.20	642.07	1	$0'^{L}$	1678.39	,л —	C	1
	-642.07	355.20	0	1	254.15		d	1

This example can be solved by either (Ax=L $\rightarrow X = A^{-1}L$) or ($X = (A^T W A)^{-1} A^T W L$)

 $X = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 1.1196 \\ 1.1628 \\ 534.0657 \\ 559.9934 \end{bmatrix}$

Now, extract the physical parameters:
$$\lambda = \sqrt{a^2 + b^2} = 1.6142$$

 $\theta = tan^{-1}(b/a) = 0.8043 \ rad = 46.0844^0$
 $t_x = 534.0657 \ mm$
 $t_y = 559.9934 \ mm$

Example 2: Linear Model of 2D Transf.

• Given 7 points of the fiducial marks, together with observations of these 7 points. Compute the coordinates of 7 and 8 using the four-parameters similarity transformation.

No.	x'_i	y'_i	x _i	y _i
1	98.28	200.32	101	201
2	101.22	199.8	104	201
3	98.99	204.21	101	205
4	99.75	203.06	102	204
5	102.54	201.57	105	203
6	102.91	203.54	105	205
7	95.01	206		
8	99.00	210		

** note that here A matrix will not be a square matrix (we cannot use $X = A^{-1}b$ in this case)

Constructing the Design matrix (A or J) and misclosure vector (L or K or f_i)

• for
$$i = 1:n$$

$$A = \begin{bmatrix} x'_1 & -y'_1 & 1 & 0 \\ y'_1 & x'_1 & 0 & 1 \\ x'_2 & -y'_2 & 1 & 0 \\ y'_2 & x'_2 & 0 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ x'_n & -y'_n & 1 & 0 \\ y'_n & x'_n & 0 & 1 \end{bmatrix}; L = \begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \\ \vdots \\ \vdots \\ x_n \\ y_n \end{bmatrix} \Rightarrow \text{ in MATLAB, } A = \begin{bmatrix} x'(i) & -y'(i) & 1 & 0 \\ y'(i) & x'(i) & 0 & 1 \end{bmatrix}; L = \begin{bmatrix} x(i) \\ y(i) \end{bmatrix}$$

end

$$X = (A^T W A)^{-1} A^T W L,$$

Partial Derivatives of the 2D Tranf.

$$J_{2n \times 4} = \begin{bmatrix} \frac{\partial F_1}{\partial \lambda}, \frac{\partial F_1}{\partial \theta}, \frac{\partial F_1}{\partial t_x}, \frac{\partial F_1}{\partial t_y} \\ \frac{\partial F_2}{\partial \lambda}, \frac{\partial F_2}{\partial \theta}, \frac{\partial F_2}{\partial t_x}, \frac{\partial F_2}{\partial t_y} \end{bmatrix}_{2n \times 4}$$

(we will derive that in the lab)

Where

$$F_1 = x_i - \lambda x_i \cos(\theta) + \lambda x_i' \sin(\theta) - t_x$$

$$F_2 = y_i - \lambda x_i \sin(\theta) - \lambda y'_i \cos(\theta) - t_y$$

$$K = -F = -\begin{bmatrix} x_i - \lambda x_i \cos(\theta) + \lambda x_i' \sin(\theta) - t_x \\ y_i - \lambda x_i \sin(\theta) - \lambda y_i' \cos(\theta) - t_y \end{bmatrix}_{2n \times 1}$$

Example: Nonlinear Model of 2D Transf.

We will do this example in the Lab (this week)

HW-2 will be available this week, and it is due next week.

While ($\Delta < 0.\,0000001$)

for i = 1:n $B = \begin{bmatrix} \frac{\partial F_1}{\partial \lambda}, \frac{\partial F_1}{\partial \theta}, \frac{\partial F_1}{\partial t_x}, \frac{\partial F_1}{\partial t_y} \\ \frac{\partial F_2}{\partial \lambda}, \frac{\partial F_2}{\partial \theta}, \frac{\partial F_2}{\partial t_x}, \frac{\partial F_2}{\partial t_y} \end{bmatrix}_{2nx4}; \quad \Rightarrow \text{ (this will be derived in the lab.)}$ $K = -\begin{bmatrix} x - \lambda x'_i \cos(\theta) + \lambda y'_i \sin(\theta) - t_x \\ y - \lambda x'_i \sin(\theta) - \lambda y'_i \cos(\theta) - t_y \end{bmatrix}_{2nx1}$ end

* Remember from SE331:
$$\Delta = (B^{T}WB)^{-1} * (B^{T}Wf)$$

$$\Delta_{4x1} = \begin{bmatrix} \delta\lambda\\\delta\theta\\\delta t_{x}\\\delta t_{y} \end{bmatrix} = (B^{T}WB)^{-1}(B^{T}WK)$$

 $X = \begin{bmatrix} \lambda \\ \theta \\ t_x \\ t_y \end{bmatrix}^{0ld} + \begin{bmatrix} \delta \lambda \\ \delta \theta \\ \delta t_x \\ \delta t_y \end{bmatrix}$

end